1 Addendum

1.1 Introduction

The East Cambridgeshire District Council (ECDC) Water Cycle Study demonstrated that increased discharge of effluent due to growth at Littleport and Burwell Water Recycling Centres (WRC) may cause deterioration in local river quality. During consultation on the Proposed Local Plan, the Environment Agency (EA) raised concerns regarding the proposed growth in the district.

Following the comments from the EA, ECDC have reviewed and updated the quantum of development at Littleport within the plan period, which has resulted in a reduction in the number of dwellings of 600. Proposed development at Burwell will now only include sites that have allocated planning permission. Therefore, in order to address the concerns raised by the EA and to better understand the impact of future growth at Littleport and Burwell, an updated water quality assessment has been undertaken at the works.

In line with the original assessment the load standstill assessment and River Quality Planning (RQP) methodology will be used for Littleport WRC and Burwell WRC respectively.

1.2 Methodology

1.2.1 Growth Scenarios

For each development site, the receiving WRC and the increased Dry Weather Flow (DWF) to the WRC was calculated by using the number of housing units proposed, an occupancy rate of 2.3 persons per dwelling, and a consumption of 133 l/p/d (Anglian Water calculation) in line with the assessment in the existing WCS.

The wastewater demand for employment sites was calculated based on a discharge rate of 100I/employee per day.

Water Recycling Centre	Forecast additional housing units	Forecast additional employees	Observed current 90%ile DWF (MI/d)	Forecast future total DWF (MI/d)
Burwell	566	1155	0.897	1.171
Littleport	2604	5425	0.716	1.988

Table 1-1: Growth during plan period by WRC

Table 1-2: Estimated jobs growth at Burwell and Littleport

Policy Ref.	Estimated area of undeveloped employment land (ha)	Estimated floorspace (area x 0.35)	Estimated B1 jobs (0.001ha/job)	Estimated B2 jobs (0.0036ha/job)	Estimated B8 jobs (0.007sqm/job)	
BUR.M1	0.5	0.175	175	49	25	
BUR.E1	2.8	0.98	980	272	140	
Total	3.3	1.155	1,155	321	165	
LIT.E1	1	0.35	350	97	50	
LIT.E2	13	4.55	4,550	1,264	650	
LIT.M2	1.5	0.525	525	146	75	
Total	15.5	5.425	5,425	1,507	775	

Table 1-2 shows the potential future employment estimates which were provided for three employment scenarios, B1, B2 and B8. The number of potential employee numbers varies significantly across the different employment classes.

Net commitment housing units were used for both Burwell and Littleport. The estimated 'B1' jobs growth, which includes 0.001ha/job was used for employment numbers. The impact of including a further 600 units to be delivered at LIT.M2, either beyond or within the plan period was considered at Littleport.

1.2.2 Technically achievable limit (TAL)

To complete the assessment, future effluent flows were calculated to represent the updated future growth at proposed development sites within Littleport and Burwell. The assessment considered the impact of the updated Technically Achievable Limit (TAL) standard for phosphate which was introduced in unpublished EA Guidance in July 2017 and which has replaced the Best Available Technology (BAT) used in the original assessment. All other determinand limits have remained the same.

The EA advised the following technically achievable limits:

- BOD (95%ile) = 5mg/l
- Ammonia (95%ile) = 1mg/l
- Phosphate (AA) = 0.25mg/l

1.2.3 RQP Assessment

The Environment Agency's RQP tool was used to assess how the volumetric flows impacted upon the water quality at Burwell WRC and identify whether this causes a deterioration in the receiving watercourse.

Full methodology of EA guidance regarding deterioration limits and conditions are summarised in section 6.2.1 in the main report.

1.2.4 Load standstill Assessment

The load standstill assessment is a mass balance assessment of water quality. The current, consented and future loads for each determinand are calculated using the observed, consented and future flows multiplied by the permit level for each determinand. The future load is then compared with the consented load to check if it is likely to exceed its permit. The assessment gives a 'worst-case' scenario of each determinand.

The load after treatment at TAL is then calculated to each of the future loads. The TAL limit for phosphate has been updated within the assessment.

1.3 Results

1.3.1 RQP Analysis - Burwell

Tables showing the data used in the RQP assessment and the detailed results can be found in Annex B of this report. The original assessment and maps showing the location and water quality sampling points at Burwell can be found in section 1.4 of Appendix B, within the main report.

Watercourse (WwTW)	Could the development cause a greater than 10% deterioration in WQ?	Could the development cause a deterioration in WFD class of any element?	Could the development prevent the water body from reaching GES?	
	No infrastructure upgrade	e required to achieve	No infrastructure upgrade required to achieve	
Кеу	Infrastructure upgrade lik achievable with treatmen	Infrastructure upgrade likely to be required, but achievable with treatment at TAL, or not achievable due to current technology limits.		
	Cannot be achieved with Environmental capacity c growth.	Cannot be achieved with treatment at TAL. Environmental capacity could be a constraint on growth.		
Burwell	Predicted deterioration is >10% for Ammonia. Proposed development could be accommodated with a tighter permit and upgrade to WwTW. This is achievable with treatment at TAL.	No class deterioration is predicted.	Good Ecological Status cannot be achieved for P due to current technology limits. The proposed growth should not prevent the waterbody achieving good status for P in the future. Ensure proposed growth doesn't cause significant deterioration.	

Table 1-3: Outcome of RQP assessment for Burwell WRC

The RQP assessment for Burwell WRC predicted no WFD class deterioration for all determinands, with BOD remaining 'High', ammonia remaining 'Good' and phosphate remained 'Moderate'.

The results do show a deterioration of greater than 10%, but without changing WFD class for ammonia, where the growth resulted in a deterioration of 13%, however this can be addressed through treatment at TAL. GES is achievable for both ammonia and BOD, however due to current technological limitations, this is not achievable for phosphate. The proposed growth should not prevent the watercourse from meeting good status in the future, if mid-class good status was achieved upstream. See Annex B, Table 4 within the RQP analysis of Burwell WRC, where future effluent quality must be treated at TAL (0.025mg/l) to achieve good status with a target concentration of 0.100 mg/l.

1.3.2 Load standstill Analysis

Figure 1-1 in Annex A shows the results of the load standstill assessment for Littleport. All residential growth within the local plan period can be accommodated at the works. Note this does not include the potential of a further 600 units either beyond or within the plan period at LIT.M2. Employment growth can only be accommodated with the B8 employment scenario of 0.007sqm/job. Other employment scenarios such as B1 (0.001ha/job) or B2 (0.0036ha/job) or the promotion of a further 600 units at LIT.M2, cause deterioration of BOD after treatment at TAL. These scenarios can only be accommodated with the inclusion of mitigation measures for which Anglian Water will be responsible for. One such measure could be waste transfer to the Ely (Old) WRC. A further RQP assessment will be undertaken to assess whether the additional DWF from Littleport can be

JBA

accommodated at Ely (Old) WRC and will not cause a deterioration of water quality in the watercourse.

1.3.3 RQP Analysis - Ely (Old)

Methodology

Before undertaking an RQP assessment for Ely WRC (Old), a further headroom assessment is needed to calculate whether there is suitable capacity at the works to accommodate additional flow. Table 1-4 below shows the new headroom calculation.

Table 1-4: Headroom assessment for Ely WRC (Old)

Permitted Maximum DWF (MI/d)	Observed DWF (90%ile)	Additional DWF (From Littleport and Ely)	Total DWF (MI/d)	Headroom % of permitted
4.350	2.934	0.937	3.871	11%

There is suitable capacity within Ely WRC (Old) treatment works and would not require an increase in permitted DWF in order to accommodate the additional flow. Below in Table 1-5 shows the results from the RQP assessment for Ely WRC (Old).

Table 1-5: Outcome of RQP assessment for Ely WRC (Old).

Watercourse (WwTW)	Could the development cause a greater than 10% deterioration in WQ?	Could the development cause a deterioration in WFD class of any element?	Could the development prevent the water body from reaching GES?
	No infrastructure upgrade	required to achieve	No infrastructure upgrade required to achieve
Кеу	Infrastructure upgrade like achievable with treatment	Infrastructure upgrade likely to be required, but achievable with treatment at TAL, or not achievable due to current technology limits.	
	Cannot be achieved with Environmental capacity co growth.	Cannot be achieved with treatment at TAL. Environmental capacity could be a constraint on growth.	
Ely (Old)	No deterioration greater than 10% predicted.	No class deterioration is predicted.	Good Ecological Status cannot be achieved for P due to current technology limits. The proposed growth should not prevent the waterbody achieving good status for P in the future. Ensure proposed growth doesn't cause significant deterioration.

There was no WFD class deterioration for either determinand or deterioration greater than 10%. GES is not achievable for phosphate due to current technological limitations. The proposed growth should not prevent the waterbody from meeting good status in the future if a mid-class good status

1.4 Conclusions

Burwell

- The RQP analysis for Burwell WRC predicted deterioration in ammonia was greater than 10% but this can be addressed through treatment at TAL. There was no class deterioration in either determinand, but GES or GEP can only be met for ammonia and BOD.
- Proposed growth should not prevent the waterbody from meeting GES or GEP in the future for phosphate if mid-good class upstream is achieved.

Littleport

- The load standstill assessment for Littleport showed all residential properties (excluding the further 600 homes planned at LIT.M2) can be accommodated.
- Employment growth can only be accommodated with the B8 employment scenario, all other employment scenarios can only be accommodated through mitigation measures such as waste transfer to Ely WRC (Old).
- Headroom capacity at Ely WRC (Old) will not be exceeded with additional flow from Littleport as well as planned growth from Ely.
- The RQP analysis showed there to be no WFD class deterioration or deterioration greater than 10% in any determinand. GES can be met for both ammonia and BOD but not for phosphate.
- Planned growth will not prevent the waterbody from meeting GES or GEP in the future for phosphate if mid-good class upstream is achieved. The additional flow from Littleport did not significantly worsen results or analysis found within the main report for Ely WRC (Old).

It will be vital to liaise closely with Anglian Water regarding the timing of development in the area and in the future, if or when alternative treatment options may become available.

JBA

A Annex A - Load standstill Assessment for Littleport WRC

B Annex B - RQP Assessment

Figure 1-1: Load standstill Assessment for Littleport WRC with estimated jobs growth scenarios.

	Curr	ent Per	mit Leve	2l	Current Flow	Future Growth	Future Flow	Current	pollutan	t load	Conse	nted pollut	ant load	Future	e pollutar	nt load	Is futur within I after f	e polluta permitteo uture gro	nt load d value owth?	Pollut treat	ant load ment at	l with TAL	"No deterior after treat	ation" ac ment at	hieved: TAL?
Planned Growth Scenario	Permitted Maximum DWF (MI/d)	BOD 95%ile (mg/l)	NH₄ 95%ile (mg/I)	P Annual Mean (Mg/l)	Observed 90%ile DWF (MI/d)	Additional DWF (MI/d)	Total DWF (MI/d)	BOD Load (mg/d)	NH₄ Load (mg/d)	P Load (mg/d)	BOD Load (mg/d)	NH₄ Load (mg/d)	P Load (mg/d)	BOD Load (mg/d)	NH₄ Load (mg/d)	P Load (mg/d)	BOD	NH₄	Ρ	BOD Load (mg/d)	NH₄ Load (mg/d)	P Load (mg/d)	BOD	NH_4	Ρ
Residential	2.067	10	3	2	0.716	0.01	0.73	7.160	2.148	1.432	20.670	6.201	4.134	7.280	2.184	1.456	Y	Y	Y	3.640	0.728	0.364	ОК	ОК	ОК
Residential & 600 units (LIT.M2)	2.067	10	3	2	0.716	0.76	1.47	7.160	2.148	1.432	20.670	6.201	4.134	14.730	4.419	2.946	Y	Y	Y	7.365	1.473	0.737	NOT ACHIEVABLE	ОК	ОК
Residential & B8 Employment	2.067	10	3	2	0.716	0.66	1.37	7.160	2.148	1.432	20.670	6.201	4.134	13.720	4.116	2.744	Y	Y	Y	6.860	1.372	0.686	ОК	ОК	ок
Residential & B8 Employment & 600 units	2.067	10	3	2	0.716	0.83	1.55	7.160	2.148	1.432	20.670	6.201	4.134	15.460	4.638	3.092	Y	Y	Y	7.730	1.546	0.773	NOT ACHIEVABLE	ОК	ОК
Residential & B1 Employment & 600 units (LIT.M2)	2.067	10	3	2	0.716	1.27	1.99	7.160	2.148	1.432	20.670	6.201	4.134	19.880	5.964	3.976	Y	Y	Y	9.940	1.988	0.497	NOT ACHIEVABLE	ОК	ОК

WCS Asse	East Cambridg	
stw	Burwell	Permit Re
Catchment	Cam	AW1NF10
STW Point Code Assessment Date		
Receiving Water	Burwell Lode (River Cam)	
WFD Waterbody ID	GB105033042720 - Burwell Lode	Forecast up to (Housin
Upstream Sample Point	None	
Downstream Sample Point	34M12 - Burwell Lode Factory Br. Burwell	

geshire

	Permit Reference Number AW1NF1065						
I							
	Forecast Growth up to 2033 (Housing units)						

Impact of climate change assessment

STW Permit limits

Determinand	<u>Unit</u>	<u>Limit</u>	Statistic	<u>Limit 2</u>	Statistic
Permitted DWF	m3/day	1214	80%ile		
Post-Growth DWF	m3/day				
Max Daily	m3/day		Max Value		
BOD	mg/l	12	95 %ile	50	Max Value
Ammonia	mg/l	8	95 %ile	30	Max Value
Phosphate	mg/l	1	Annual Mean		

Upstream River data

Determinand	<u>Unit</u>	Mean	<u>SD</u>	<u>90 %ile</u>	<u>95 %ile</u>
Flow	Ml/d	9.90	2.39		
BOD	mg/l	1.15	0.69		
Ammonia	mg/l	0.09	0.05		
Phosphate	mg/l	0.075	0.075		

STW discharge data

Determinand	Unit	Mean	<u>SD</u>	Shift Parameter	Samples
Flow	MI/d	1.129	0.288		
Additional Flow due to Growth	MI/d	0.274			
Post-Growth flow	MI/d	1.403	0.358		
BOD	mg/l	2.550	1.080		
Ammonia	mg/l	1.060	1.730		
Phosphate	mg/l	0.48	0.22		

Downstream River data

Determinand	Unit	Mean	<u>SD</u>	<u>90 %ile</u>	<u>95 %ile</u>
BOD	mg/l				
Ammonia	mg/l				
Phosphate	mg/l				

Salmonid Fishery (Y/N) No

WFD Cycle 2

					D/S sampling	
Determinand	Cycle 2 (2016)	Statistic	Unit	Standard	point +10%	No deterioration limit

Comments/Assumptions	
From EA supplied data sheet	
From EA supplied data sheet	
From EA supplied data sheet	

Comments/Assumptions
Assumed mid-Good status upstream

Comments/Assumptions
Data supplied from EA - 2015 Measured DWF for East Cambs WwTWs spreadsheet
From WwTW headroom assessment
From WwTW headroom assessment

Comments/Assumptions	

BOD	High	90 %ile	mg/l	4	No data	4
Ammonia	Good	90 %ile	mg/l	0.6	No data	0.6
Phosphate	Moderate	Annual Average	mg/l	0.231	No data	0.231

1. Baseline performance

	Results		Is Cycle 2 WFD	Class used for no	No deterioration	
Determinand	worksheet	Baseline conc.	met?	deterioration	limit	
BOD	RQP1	2.14	Yes	High		
Ammonia	RQP3	0.45	Yes	Good		
Phosphate	RQP5	0.13	Yes	Moderate		

2. No-deterioration test vs baseline

	Results		Results		Percentage	
Determinand	worksheet	Baseline conc.	worksheet	Future conc.	Deterioration	Class Deterioration?
BOD	RQP1	2.14	RQP2	2.17	1%	No
Ammonia	RQP3	0.45	RQP4	0.51	13%	No
Phosphate	RQP5	0.13	RQP6	0.14	8%	No

3. Required discharge quality to avoid deterioration

					Effluent quality	
					required to	Is no deterioration
			Assumed TAL of		prevent	achievable with
Determinand	Statistic	Unit	treatment	Results worksheet	deterioration	treatment at TAL?
						No change to permit is
						required to prevent
BOD	95%ile	mg/l	4	RQP7	N/A	deterioration
Ammonia	95%ile	mg/l	0.6	RQP8	3.68	Yes
						No change to permit is
						required to prevent
Phosphate	Annual Average	mg/l	0.25	RQP9	N/A	deterioration

4. Could the development alone prevent the receiving water from reaching Good Ecological Status or Potential?

			Effluent quality required to achieve target			
Determinand	Target Status	Target conc.	Results worksheet	Present day	Results worksheet	Future
BOD	High	Acheiving target	RQP10	N/A	RQP14	N/A
Ammonia	Good	Acheiving target	RQP11	N/A	RQP15	N/A
Phosphate	Good	0.1	RQP12	0.27	RQP16	0.25

Commonts /Assumptions
Comments/Assumptions
Assumed mid-upstream mid-Good status quality 0.075 mg/l

WCS Assessment Datasheet

STW	Elv (Old) WRC
Catchment	Ouse
STW Point Code	
Assessment Date	
Receiving Water	Ely Ouse
WFD Waterbody ID	GB205033000070 - Ely Ouse (South Level)
Upstream Sample Point	36M01 - Ely Ouse Ely High Rd. Br
Downstream Sample Point	36M03 - Ely Ouse Cuckoo Rd. Br. Ely

East Cambridgeshire

Impact of climate change assessment

STW Permit limits

Determinand	<u>Unit</u>	<u>Limit</u>	Statistic	Limit 2	Statistic
Permitted DWF	m3/day	4350	80%ile		
Post-Growth DWF	m3/day				
Max Daily	m3/day		Max Value		
BOD	mg/l	25	95 %ile		Max Value
Ammonia	mg/l	15	95 %ile		Max Value
Phosphate	mg/l	2	Annual Mean		

Upstream River data

Determinand	Unit	Mean	<u>SD</u>	<u>90 %ile</u>	<u>95 %ile</u>
Flow	MI/d		109.469		
BOD	mg/l	1.94	1.13		
Ammonia	mg/l	0.19	0.19		
Phosphate	mg/l	0.078	0.078		

STW discharge data

Determinand	<u>Unit</u>	Mean	<u>SD</u>	Shift Parameter	Samples -
Flow	MI/d	3.57	0.64		
Additional Flow due to Growth	MI/d	0.94			
Post-Growth flow	MI/d	4.51	0.81		
BOD	mg/l	7.66	3.60		
Ammonia	mg/l	3.41	1.77		
Phosphate	mg/l	0.96	0.55		

Downstream River data

Determinand	Unit	Mean	<u>SD</u>	<u>90 %ile</u>	95 %ile
BOD	mg/l				
Ammonia	mg/l				
Phosphate	mg/l				

Salmonid Fishery (Y/N) No

WFD Cycle 2

					D/S sampling	
Determinand	Cycle 2 (2016)	Statistic	Unit	Standard	point +10%	No deterioration limit

Comments/Assumptions	
From EA supplied data sheet	
From EA supplied data sheet	
From EA supplied data sheet	

Comments/Assumptions		

ata supplied from EA - 2	15 Measured DWF for East Cambs V	/wTWs spreadsheet
dditonal Growth withou	Littleport flow	
rom WwTW headroom	ssessment	

Comments/Assumptions	

BOD	Good	90 %ile	mg/l	5	No data	5
Ammonia	Good	90 %ile	mg/l	0.6	No data	0.6
Phosphate	Moderate	Annual Average	mg/l	0.229	No data	0.229

1. Baseline	performance
-------------	-------------

	Results		Is Cycle 2 WFD	Class used for no	No deterioration	
Determinand	worksheet	Baseline conc.	met?	deterioration	limit	
BOD	RQP1	3.37	Yes	High		
Ammonia	RQP3	0.43	Yes	Good		
Phosphate	RQP5	0.09	No	Good		

2. No-deterioration test vs baseline

	Results		Results		Percentage	
Determinand	worksheet	Baseline conc.	worksheet	Future conc.	Deterioration	Class Deterioration?
BOD	RQP1	3.37	RQP2	3.38	0%	No
Ammonia	RQP3	0.43	RQP4	0.44	2%	No
Phosphate	RQP5	0.09	RQP6	0.09	0%	No

3. Required discharge quality to avoid deterioration

Determinand	Statistic	Unit	Assumed TAL of treatment	Results worksheet	Effluent quality required to prevent deterioration	ls no deterioration achievable with treatment at TAL?
						No change to permit is
						required to prevent
BOD	90 %ile	mg/l	5	RQP7	N/A	deterioration
						No change to permit is
						required to prevent
Ammonia	90 %ile	mg/l	0.6	RQP8	N/A	deterioration
						No change to permit is
						required to prevent
Phosphate	Annual Average	mg/l	0.25	RQP9	N/A	deterioration

4. Could the development alone prevent the receiving water from reaching Good Ecological Status or Potential?

			Effluent quality required to achieve target				
Determinand	Target Status	Target conc.	Results worksheet	Present day	Results worksheet	Future	
BOD	Good	Acheiving target	RQP10	N/A	RQP14	N/A	
Ammonia	Good	Acheiving target	RQP11	N/A	RQP15	N/A	
Phosphate	Good	0.099	RQP12	1.77	RQP16	1.40	

Comments/Assur	nptions	
Assumed mid-Go	od quality upstream (mean and SD of 0.078 mg/l)	

Comments/Assumptions

Assumed mid-Good quality for Monte Carlo Calcs: mean and sd 0.078mg/l

Comments/Assumptions		